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Abstract

In this paper, Legendre moments are calculated to extract the global information from a set of two-dimensional polyacrylamide gel
electrophoresis map images. The dataset contains 18 samples belonging to two different cell lines (PACA44 and T3M4) of control (untreated)
and drug-treated pancreatic ductal carcinoma cells. The aim of this work was to obtain the correct classification of the 18 samples, using the
Legendre moments as discriminant variables. For each image the Legendre moments up to a maximum order of 100 were computed. The
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tepwise linear discriminant analysis (LDA) was performed in order to select the moments with the highest discriminating power. T
emonstrate that the Legendre moments can be successfully applied for fast classification purposes and similarity analysis.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Since each cell or biological fluid has a rich protein
ontent, an efficient method for achieving their separation
nd successive determination is necessary. Two-dimensional
olyacrylamide gel electrophoresis (2D-PAGE)[1,2] has a
nique capacity for the resolution of complex mixtures,
ermitting the simultaneous analysis of hundreds or even

housands of proteins. The separation is achieved by two
uccessive electrophoretic runs: the first run (through a pH
radient) separates the proteins according to their isoelectric
oint, while the second run (through a porosity gradient) sep-
rates them according to their molecular mass. The result of

his technique is a two-dimensional map with spots spread all
ver the gel surface; each spot represents a particular protein
nd for this reason the 2D-PAGE maps may be considered as
“snapshot” of the protein content of the investigated cell at
given point of its life cycle.

∗ Corresponding author. Tel.: +39 0131 360272; fax: +39 0131 287426.

The physiological state of a particular cell or tissu
related to its protein content, and a particular disease
cause differences in the proteins contained in the patholo
tissue. These differences may consist of changes in the
tive abundance or in the appearance/disappearance of
proteins[3–7]. Thus, 2D-PAGE maps are fundamental to
for both diagnostic and prognostic purposes. In fact it is p
ble to compare maps belonging to healthy subjects with m
belonging to subjects affected by any pathology, in ord
point out the differences, which may permit to identify n
powerful markers for diagnostic and prognostic purpose
well as to understand the disease biochemical mecha
through the identification of the proteins involved.

In the field of drug development, especially for can
the 2D-PAGE technique is widely applied[8,9]. The study o
two-dimensional maps can give information about the e
tiveness of a drug treatment, that is to investigate if this
played the expected role on the protein content of the p
logical cell.

Unfortunately, the comparison of different 2D-PAG
maps is not a trivial process to achieve[10,11]. The diffi-
E-mail address: marengoe@tin.it (E. Marengo). culty which arises during the comparison is above all due
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to the high complexity of the specimen, which can pro-
duce maps with thousands of spots; the complexity is also
increased by the highly articulated sample pretreatment, often
characterised by many purification/extraction steps. These
experimental steps may cause the appearance of spurious
spots due to impurities in the final 2D-maps. Moreover, the
differences occurring between treated and reference samples
can be very small, thus complicating their identification in a
real complex map.

Usually, the differential analysis between classes of dif-
ferent 2D-PAGE maps is achieved by means of commercial
software (i.e., Melanie III or PDQuest)[12,13], which exploit
the following three-step method: (i) the 2D-PAGE images to
be compared are aligned, so that all gels are reduced to the
same size. The maps are then matched to each other; (ii) The
spots present on each map are independently revealed; (iii)
the maps are matched to each other in order to identify the
common information and the differences.

In this work the procedure of classification of the 2D-
PAGE maps has been performed without the use of commer-
cial software and the steps listed above were by-passed; in
other words the original maps, without pre-treatment, have
been used for classification. It is important to emphasize that
the phase of alignment of the maps is not necessary because
the Legendre moments are invariant with respect to trans-
lation. This is the main advantage of this new technique of
c s.
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of 2D-PAGE maps classification. Orthogonal basis of the
moments can attain a zero value of redundancy measure in a
set of moment functions, so that these orthogonal moments
correspond to independent characteristics of the image. In
other words, moments with orthogonal basis functions can
be used to represent the image by a set of mutually inde-
pendent descriptors, with a minimum amount of information
redundancy. Therefore, orthogonal moments have additional
properties of being more robust with respect to the non-
orthogonal moments, in the presence of image noise.

Orthogonal moments also permit the analytical recon-
struction of an image intensity function from a finite set of
moments, using the inverse moment transform.

2.1. Legendre moments

The two-dimensional Legendre moments of order (p + q),
given an image intensity mapf(x,y), are defined as:

Lpq = (2p + 1)(2q + 1)

4

∫ 1

−1

×
∫ 1

−1
Pp(x)Pq(y)f (x, y) dx dy; x, y ∈ [−1, 1],

(1)

where Legendre polynomial,Pp(x), of orderp is given by:
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lustering of the maps, based on the Legendre moment
The Legendre moments were calculated by a Ma

lgorithm and then the stepwise linear discriminat ana
14–16] was executed to select the moments that allo
he best separation of the classes of maps. The dendro
as also computed to verify the separation of the sam

17–19].
In this paper, the Legendre moments technique is ap

o a dataset comprising 18 samples belonging to two diffe
ell lines (PACA44 and T3M4) of pancreatic human can
efore and after the treatment with Trichostatin A. The
f this work is to assign the 18 samples to the correct cl

If proved to be effective, this tool could permit to perfo
ast search and comparisons in 2D-PAGE maps data
or diagnostic purposes.

. Theory

Moments function of image intensity values can be u
o capture the global features of the image. Various t
f moments have been widely used for pattern recogn

mage analysis and object classification[20–27]. Moment
unctions such as geometric moments, orthogonal mom
otational moments and complex moments are all useful
n the field of pattern recognition and can be used to des
he features of objects such as the shape, area, border, lo
nd orientation.

In this paper orthogonal Legendre moments[28–30]have
een implemented as feature descriptors in the applic
n

p(x)

=
p∑

k=0

{
(−1)p−k/2 1

2p

(p + k)!xk

((p − k)/2)!((p + k)/2)!k!

}
p−k=even

(2)

he recurrence relation of Legendre polynomials,Pp(x), is
ives as follows:

p(x) = (2p − 1)xPp−1(x) − (p − 1)Pp−2(x)

p
, (3)

hereP0(x) = 1, P1(x) = x andp > 1. Since the region of de
nition of Legendre polynomials is the interior of [−1,1], a
quare image ofN × N pixels with intensity functionf(i,j),
≤ i, j ≤ (N − 1), is scaled in the region−1 <x, y < 1.
Eq.(1) can then be expressed in discrete form as:

pq = λpq

N−1∑
i=0

N−1∑
j=0

Pp(xi)Pq(yj)f (i, j), (4)

here the normalizing constant is:

pq = (2p + 1)(2q + 1)

N2 (5)

i andyj denote the normalized pixel coordinates in the ra
−1,1], which are given by:

i = 2i

N − 1
− 1 and yj = 2j

N − 1
− 1 (6)
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Fig. 1. Image reconstruction using Legendre moments of increasing order.

The reconstruction of the image function from the calculated
moments can be expressed as:

f (i, j) =
pmax∑
p=0

qmax∑
q=0

λpqPp(xi)Pq(xj) (7)

Fig. 1 shows the results of the reconstruction of a 2D-
PAGE map with Legendre moments of increasing order:

3. Cluster analysis

Cluster analysis technique is a multivariate statistical tool
to aggregate the objects according to their similarity. As a
result hierarchically or non-hierarchical ordered clusters are
formed. The similarity of objects is described by an appro-
priate similarity measure.

One possibility for clustering objects is their hierarchi-
cal aggregation. Here the objects are combined according
to their distances or similarities. Two different procedures
exist: agglomerative and divisive. Divisive cluster formation
is based on splitting the whole set of objects into individual
clusters. With the most frequently used agglomerative clus-
tering one starts with single objects and merges them to larger
o

ram,
i lev-
e ing
m n the
s

3.1. Linear discriminant analysis (LDA)

LDA is a Bayesian classification method that allows the
discrimination of the samples present in a dataset consider-
ing its multivariate structure. The assignment of a sample,
x, characterized byp features, to a classj of all classesg is
based on maximizing theposterior probability

P(j|x) for j = 1, . . . , g (8)

Application of Bayes’s theorem for calculation of the poste-
rior probability gives:

P(j|x) = p(x|j)P(j)

p(x)
(9)

According to Eq.(9), the posterior probability is computed
from the probability density function for the considered class,
P(j|x), the prior probability for that classP(j) and the prob-
ability density function over all classesp(x). A samplex is
then assigned to that classj, for which the largest posterior
probability is found.

For computation of the class probability density,p(x|j),
the multidimensional normal distribution is assumed:

p(x|j) = (2π)−d/2|Sj|−0.5

× exp[−0.5(x − x̄j)S
−1
j (x − x̄j)

T] (10)

w id
x

S

bjects groups.
The result of such clustering is a graph, called dendrog

n which the objects (x-axis) are connected at decreasing
ls of similarity (y-axis). The results of hierarchical cluster
ethods depend on the specific linking method and o

pecific measure of similarity.
here the covariance matrixSj based on the class centro
j̄ is obtained from:

j = 1

nj

nj∑
i=1

(xi − x̄j)
T(xi − x̄j) (11)
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x̄j = 1

n

nj∑
i=1

xi
(j) (12)

nj describes the number of samples in classj.
Maximizing the posterior probability is related to mini-

mizing the discriminant scores obtained from:

dj(x) = (x − x̄j)
TS−1

j (x − x̄j) + ln |Sj| − 2 ln P(j) (13)

An unknown sample is assigned to the classj for which the
distance to its class centroid is shortest. The first term of
Eq.(13)((x − x̄j)TS−1

j (x − x̄j)) represents the Mahalanobis
distance between the samplex and the class centroid̄xj.

In LDA it is assumed that the class covariance matrices
are equal, i.e.Sj = S for all j = 1 tog.

4. Experimental

4.1. Dataset

Each cell line pool, T3M4 and PACA44, was split so that
half of the pool was treated with TSA and the other was not.
Therefore, the dataset, containing 18 2D maps of pancreatic
human cancer, was divided into four classes:

•
• for

•
• 8 h
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(Hercules, CA, USA). Ethanol, methanol and acetic acid
were from Merck (Darmstadt, Germany). Trichostatin A
(TSA) was obtained from Sigma–Aldrich (St. Louis, MO,
USA). A 2.2 mM solution of TSA in absolute ethanol was
prepared and stored at−80◦C until use.

4.3. Cell treatment with TSA

PACA44 and T3M4 cell were grown in RPMI 1640
supplemnted with 20 mM glutamine and 10% (v/v) FBS
(BioWhittaker, Italy) and were incubated at 37◦C with 5%
(v/v) CO2. Subconfluent cells were treated with 0.2 mM TSA
for 48 h.

4.4. Cell lysis

Protein extraction from cells was performed with lysis
buffer (40 mM Tris, 1% (v/v) NP40, 1 mM Na2VO4, 1 mM
NaF, 1 mM PMSF, protease inhibitor cocktail). Cells were
left in lysis buffer for 30 min in ice. After centrifugation at
14,000× g at 4◦C for removal of particulate material, the
protein solution was collected and stored at−80◦C until
used.

4.5. Two-dimensional electrophoresis
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four replicate 2D maps of a PACA44 cell line pool;
four replicate 2D maps of a PACA44 cell line treated
48 h with TSA;
five replicate 2D maps of a T3M4 cell line pool;
five replicate 2D maps of a T3M4 cell pool treated for 4
with TSA.

Fig. 2 shows an example of the experimental 2D PA
aps obtained for each class.

.2. Chemicals and materials

Urea, thiourea, 3-[(cholamidopropyl)dimethylammoni
-propane-sulfonate (CHAPS), iodoacetamide (IA

ributylphosphine (TBP) and sodium dodecyl sulfate (S
ere obtained from Fluka (Buchs, Switzerland). Bromop
ol blu and agarose were from Pharmacia-LKB (Upps
weden). Acrylamide, N′,N′-methylenebisacrylamid
mmonium persulfate, TE-MED, the Protean IEF Cell,
S-710 Densitometer and the 17 cm long, immobil
H 3–10 linear gradient strips were from Bio-Rad La

Fig. 2. 2D-PAGE maps of the
Seventeen centimetre long, pH 3–10 immobilized pH
ient strips (IPG; Bio-Rad Labs., Hercules, CA, USA) w
ehydrated for 8 h with 450�L of 2D solubilizing solution
7 M urea, 2 M thiourea, 5 mM tributylphosphine, 40 m
ris and 20 mM iodoacetamide) containing 2 mg mL−1 of

otal reduced/alkylated protein from sample cells. Isoe
ric focussing (IEF) was carried out with Protean IEF C
Bio-Rad Labs.) with a low initial voltage and then
pplying a voltage gradient up to 10,000 V with a limit
urrent of 50�A. The total product time× voltage applied
as 70,000 Vh for each strip, and the temperature wa
t 20◦C. For the second dimension, the IPGs strips w
quilibrated for 26 min by rocking in a solution of 6
rea, 2% (w/v) SDS, 20% (v/v) glycerol, 275 mM Tris–H
H 8.8. The IPG strips were then laid on a 8–18%
radient SDS-PAGE with 0.5% (w/v) agarose in the c
de buffer (192 mM glycine, 0.1% (w/v) SDS and T

o pH 8.3). The anodic buffer was a solution of 375 m
ris–HCl, pH 8.8. The electrophoretic run was perform

mple of pancreatic human cancer.
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by setting a current of 2 mA for each gel for 2 h, then
5 mA/gel for 1 h, 10 mA/gel for 20 h and 20 mA/gel until
the end of the run. During the whole run the temperature
was set at 11◦C. Gels were stained overnight with colloidal
Coomassie blu [0.1% (w/v) Comassie Brilliant Blue G, 34%
(v/v) methanol, 3% (v/v) phosphoric acid and 17% (w/v)
ammonium sulphate]; destaining was performed with a solu-
tion of 5% (v/v) acetic acid until a clear background was
achieved.

4.6. Software

Stepwise LDA was performed with STATISTICA (Stat-
soft, ver. 6.1, USA). Legendre moments were computed with
MATLAB (The Mathworks, ver. 6.5, USA); this software
was also used for data treatment and for graphical represen-
tations.

5. Results and discussion

The 2D gels of all the samples (PACA44 control and
treated with TSA, T3M4 control and treated with TSA) were
scanned with a GS-710 densitometer (Bio-Rad Labs.).

Each 2D-PAGE, which was automatically digitalised, is
described by a matrix of dimension 200 pixels× 200 pixels;
t ain-
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Table 1
Legendre moments selected by means of stepwise LDA

Order of moment

p q

2 0
2 11
3 10
5 5

86 8
96 0

showing that the six selected variables can be effectively used
also for predictive purposes.

5.2. Cluster analysis

The six moments selected with stepwise LDA are able
to separate the four classes of samples and therefore they
were used to perform a cluster analysis to verify how the
samples are grouped. The dendrogram calculated using the
Ward method[32] and the Euclidean distance to compute the
samples similarity is reported inFig. 3.

The ordinate labelled (Dleg/Dmax) × 100 is a percentage
dissimilarity scale expressing the linking distance (Dleg) of
the groups of objects as a fraction of the maximum possible
distance (Dmax). It is possible to observe that the samples are
divided into two main groups, at a normalised distance of
more than 80%; the first group contains the samples belong-
ing to PACA44 cells while the second group contains the
samples belonging to T3M4 cells.

At a normalised distance of more then 45% the two main
groups are then separated into two sub-groups: both the con-
sidered cell lines are correctly separated in control and treated
samples.

The dendrogram demonstrates and confirms that the six
Legendre moments, selected in the stepwise LDA phase, are
able to correctly separate the four classes of samples.

ents.
he value of each pixel varying from 0 to 1 indicate the st
ng intensity in the given position.

The Legendre moments of the 18 digitalised images
alculated. Moments up to a maximum order of 100 w
omputed from the images and therefore a matrix of dim
ion 101× 101 is obtained for each image. This matrix ho
he global information of the 2D-PAGE map.

The final dataset contains 18 samples and 10,201
bles. The number of variables is very large and man

hem do not contain information related to the specific ta
f correctly classifying the samples, for this reason a me

or selecting the variables having the highest power of
rimination was applied (stepwise LDA).

.1. Stepwise linear discriminant analysis

LDA was performed on the final dataset. The most
riminant moments were selected by a stepwise proced
orward search withFto-enter= 4.0.

The results of stepwise LDA procedure shows that
ix different Legendre moments are necessary in ord
iscriminate the four classes of samples. In this case, th
riminant functions are a linear combination of the mom
pq selected, which are reported inTable 1.

Using the selected variables all samples are correctly
ified by LDA. In order to evaluate the classification mod
redictive ability leave-one-out cross-validation method[31]
as used, since the number of samples available is not
ient for performing a more severe validation. Also the le
ne-out validation provided a 100% of correct classifica
 Fig. 3. Dendrogram calculated on the basis of the six Legendre mom
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6. Conclusions

In this work a new method, based on the Legendre
moments, has been developed for classifying 2D-PAGE
maps. Legendre moments were calculated here on a dataset
comprising 18 samples that belong to two different cell lines
(T3M4 and PACA44) of control (untreated) and drug-treated
pancreatic human cancer cells.

Legendre moments proved to be a successful tool for
extracting the global information present in the images of the
2D maps obtained from 2D gel-electrophoresis: stepwise-
LDA provided the correct classification of the samples by
mean of only six moments, thus greatly simplifying the sys-
tem dimensionality.

The separation of the 18 samples into four groups by mean
of the six Legendre moments was also confirmed by cluster
analysis.

This method could be applied in principle for a fast
comparison and/or search along the available proteomic
databases. Its diagnostic/prognostic application is straight-
forward.

Work is in progress in our laboratory to compare the results
obtained with Legendre moments to other image analysis
tools, like Zernicke and Chebyschev moments.
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